Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
AAPS PharmSciTech ; 25(5): 98, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714600

RESUMEN

Respiratory diseases caused by viruses are a serious global health threat. Although the use of hand sanitizers containing alcohol and synthetic antiseptic agents is recognized as an effective, simple, and low-cost measure to combat viral transmission, they can harm human health and the environment. Thus, this work aimed to study the efficacy of combining Camellia sinensis and Chamomilla recutita extracts in a skin- and eco-friendly leave-on hand sanitizer to prevent the spread of respiratory viruses. An oil-in-water emulsion containing C. recutita oily extract (5.0%), C. recutita glycolic extract (0.2%) and C. sinensis glycolic extract (5.0%) showed virucidal activity against HAdV-2 (respiratory virus) and two surrogate viruses of SARS-CoV-2 (HSV-1 and MVH-3), showing great potential to prevent the spread of respiratory viruses. These natural extracts combined are also promising to combat a broad spectrum of other viruses, in the form of antiseptic mouthwashes or throat sprays, surface disinfectants, and veterinary products, among others. Complementally, the developed hand sanitizer demonstrated efficacy against bacteria and fungus.


Asunto(s)
Antivirales , Desinfectantes para las Manos , Extractos Vegetales , Desinfectantes para las Manos/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Humanos , Antivirales/farmacología , Antivirales/química , Camellia sinensis/química , Animales , SARS-CoV-2/efectos de los fármacos , Chlorocebus aethiops , COVID-19/prevención & control , COVID-19/virología
2.
Sci Total Environ ; 928: 172375, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38604372

RESUMEN

Using waste from sewage systems, particularly human excreta, could save resources and increase soil fertility, contributing to nutrient management. However, because of the pathogenic content in human feces, this resource can pose health risks to farmers and consumers. Therefore, this work analyzed the behavior of the microorganisms: Escherichia coli ATCC13706 and human adenovirus (HAdV-2) in the soil and the internal part of the plant tissue during the vegetative stage after applying spiked composted human feces as biofertilizer. In a greenhouse, we simulated the application of the biofertilizer in lettuce cultivation by spiking three concentrations of E. coli (6.58, 7.31, and 8.01 log10 CFU.g-1) and HAdV-2 (3.81, 3.97, and 5.92 log10 PFU.g-1). As a result, we achieved faster decay in soil at higher concentrations of E. coli. We estimated linear decay rates of -0.07279, -0.09092, and -0.115 days, corresponding to T90s of 13.7, 11.0, and 8.6 days from higher to smaller concentrations of E. coli, respectively. The estimated periods for the inactivation of 4 logarithmic units of E. coli bacteria in soil are longer than the cultivation period of lettuce for all concentrations studied. Concerning the bacterial contamination in plants, we found E. coli in the internal part of the leaves at the highest concentration tested during the first three weeks of the experiment. Furthermore, HAdV-2 was found in roots at a stable concentration of 2-2.3 log10 PFU.g-1 in five of the six samples analyzed. Therefore, bacterial infection could pose a risk, even if fresh greens are washed before consumption, especially for short-term cultures. Regarding viral infection, a positive result in the roots after disinfection may pose a risk to root and tubercule vegetables. These discoveries highlight the importance of conducting comprehensive evaluations of hygiene practices in incorporating organic amendments in crops, explicitly aiming to minimize the risk of post-contamination.


Asunto(s)
Adenovirus Humanos , Escherichia coli , Heces , Fertilizantes , Lactuca , Microbiología del Suelo , Lactuca/microbiología , Lactuca/virología , Heces/microbiología , Heces/virología , Humanos , Adenovirus Humanos/fisiología , Producción de Cultivos/métodos , Compostaje , Reciclaje , Suelo/química
3.
Front Cell Infect Microbiol ; 14: 1355809, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606293

RESUMEN

During the SARS-CoV-2 pandemic angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) were constantly under the scientific spotlight, but most studies evaluated ACE2 and TMPRSS2 expression levels in patients infected by SARS-CoV-2. Thus, this study aimed to evaluate the expression levels of both proteins before, during, and after-infection. For that, nasopharyngeal samples from 26 patients were used to measure ACE2/TMPRSS2 ex-pression via qPCR. Symptomatic patients presented lower ACE2 expression levels before and after the infection than those in asymptomatic patients; however, these levels increased during SARS-CoV-2 infection. In addition, symptomatic patients presented higher expression levels of TMPRSS2 pre-infection, which decreased in the following periods. In summary, ACE2 and TMPRSS2 expression levels are potential risk factors for the development of symptomatic COVID-19, and the presence of SARS-CoV-2 potentially modulates those levels.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Serina Endopeptidasas , Humanos , Enzima Convertidora de Angiotensina 2/genética , SARS-CoV-2 , Serina Endopeptidasas/genética
4.
Bioprocess Biosyst Eng ; 47(5): 651-663, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554182

RESUMEN

During scaling of fermentations, choosing a bioreactor is fundamental to ensure the product's quality. This study aims to produce bioherbicides using Trichoderma koningiopsis fermentation, evaluating process parameters in an Airlift bioreactor. As a response, we quantified the production of enzymes involved in the bioherbicide activity (amylase, cellulase, laccase, lipase, and peroxidase). In addition, it evaluated the agronomic efficiency of the fermented extract optimized through tests that promoted soybean growth and nodulation, soybean seed germination, and in vitro phytopathogen control. As a result of optimizing the scaling bioprocess, it was possible to obtain an adequate fermentation condition, which, when applied to soybean seeds, had beneficial effects on their growth. It allowed the production of an enzyme cocktail. These results add a crucial biotechnological potential factor for the success of the optimized formulation in the Airlift bioreactor, in addition to presenting relevant results for the scientific community.


Asunto(s)
Reactores Biológicos , Glycine max , Trichoderma , Glycine max/metabolismo , Glycine max/crecimiento & desarrollo , Trichoderma/crecimiento & desarrollo , Trichoderma/metabolismo , Fermentación
5.
Braz J Microbiol ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319531

RESUMEN

The mangrove ecosystem plays a crucial role in preserving the biodiversity of plants, animals, and microorganisms that are essential for materials cycles. However, the exploration of endophytic fungi isolated from mangroves, particulary in Santa Catarina (SC, Brazil), remains limited. Therefore, the purpose of this study was to assess the biodiversity of endophytic fungi found in Avicennia schaueriana, Laguncularia racemosa, Rhizophora mangle, and Spartina alterniflora from two mangroves on the Island of Santa Catarina: one impacted by anthropic action (Itacorubi mangrove) and the other environmentally preserved (Ratones mangrove). Samplings were carried out between January 2020 and May 2021. Fungi were isolated from leaves, stems, and roots, identified, and clustered into groups through morphological characteristics. Further, a representative strain of each group was identified through ITS1 sequencing. A total of 373 isolates were obtained from plant tissues, of which 96 and 277 isolates were obtained from Itacorubi and Ratones mangroves, respectively. Molecular identification showed that the endophytic fungal community comprised at least 19 genera. The data on fungal community diversity revealed comparable diversity indices for genera in both mangroves. However, we observed differences in the total frequency of fungal genera between impacted (27.38%) and non-impacted (72.62%) mangroves. These findings suggest that anthropic activities in and around the Santa Catarina mangroves have had negative impact on the frequency of endophytic fungi. This emphasizes the reinforcing the significance of preserving these environments to ensure the maintenance of fungal community diversity.

6.
ACS Biomater Sci Eng ; 10(3): 1808-1818, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38411100

RESUMEN

Bacteria are an old concern to human health, as they are responsible for nosocomial infections, and the number of antibiotic-resistant microorganisms keeps growing. Copper is known for its intrinsic biocidal properties, and therefore, it is a promising material to combat infections when added to surfaces. However, its biocidal properties in the presence of light illumination have not been fully explored, especially regarding the use of microsized particles since nanoparticles have taken over all fields of research and subjugated microparticles despite them being abundant and less expensive. Thus, the present work studied the bactericidal properties of metallic copper particles, in microscale (CuMPs) and nanoscale (CuNPs), in the absence of light and under white LED light illumination. The minimum bactericidal concentration (MBC) of CuMPs against Staphylococcus aureus that achieved a 6-log reduction was 5.0 and 2.5 mg mL-1 for assays conducted in the absence of light and under light illumination, respectively. Similar behavior was observed against Escherichia coli. The bactericidal activity under illumination provided a percentage increase in log reduction values of 65.2% for S. aureus and 166.7% for E. coli when compared to the assays under dark. This assay reproduced the testing CuNPs, which showed superior bactericidal activity since the concentration of 2.5 mg mL-1 promoted a 6-log reduction of both bacteria even under dark. Its superior bactericidal activity, which overcame the effect of illumination, was expected once the nanoscale facilitated the interaction of copper within the surface of bacteria. The results from MBC were supported by fluorescence microscopy and atomic absorption spectroscopy. Therefore, CuMPs and CuNPs proved to have size- and dose-dependent biocidal activity. However, we have shown that CuMPs photoactivity is competitive compared to that of CuNPs, allowing their application as a self-cleaning material for disinfection processes assisted by conventional light sources without additives to contain the spread of pathogens.


Asunto(s)
Cobre , Staphylococcus aureus , Humanos , Cobre/farmacología , Cobre/química , Escherichia coli , Iluminación , Antibacterianos/farmacología , Antibacterianos/química , Bacterias
7.
Bioprocess Biosyst Eng ; 46(12): 1729-1754, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37743409

RESUMEN

This review aimed to show that bioherbicides are possible in organic agriculture as natural compounds from fungi and metabolites produced by them. It is discussed that new formulations must be developed to improve field stability and enable the commercialization of microbial herbicides. Due to these bottlenecks, it is crucial to advance the bioprocesses behind the formulation and fermentation of bio-based herbicides, scaling up, strategies for field application, and the potential of bioherbicides in the global market. In this sense, it proposed insights for modern agriculture based on sustainable development and circular economy, precisely the formulation, scale-up, and field application of microbial bioherbicides.


Asunto(s)
Herbicidas , Herbicidas/farmacología , Herbicidas/metabolismo , Hongos/metabolismo , Fermentación , Agricultura
8.
Microorganisms ; 11(9)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37764066

RESUMEN

Bacteriophages (phages for short) are bacteria-specific viruses that have been drawing attention when it comes to countering the ever-growing antibiotic bacterial resistance, and are being seen as one of the most promising technologies against multi-antibiotic-resistant bacteria. Although bacteriophages are commonly regarded only as anti-bacterial objects unable to directly interact with eukaryotic cell metabolism, an increasing quantity of evidence has indicated that bacteriophages can directly affect cells bacteria in both in vitro and in vivo applications, influencing the behavior of tissues and immune systems. In sight of this new range of applications, several authors have expressed enthusiasm in phage therapy as direct modulators of eukaryotic cells for clinical usage, highlighting the need for further investigations covering the pharmacology of these new "eukaryotic-viruses", as even harmful interactions with eukaryotic cells were detected after phage therapy. The present review aims to cover and highlight mechanisms through which bacteriophages may interact with immune cells, analyzing potential clinical applications and obstacles presented in the use of bacteriophages as anti-inflammatory tools.

9.
Viruses ; 15(9)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37766366

RESUMEN

Among the respiratory pathogens of birds, the Avian Metapneumovirus (aMPV) is one of the most relevant, as it is responsible for causing infections of the upper respiratory tract and may induce respiratory syndromes. aMPV is capable of affecting the reproductive system of birds, directly impacting shell quality and decreasing egg production. Consequently, this infection can cause disorders related to animal welfare and zootechnical losses. The first cases of respiratory syndromes caused by aMPV were described in the 1970s, and today six subtypes (A, B, C, D, and two more new subtypes) have been identified and are widespread in all chicken and turkey-producing countries in the world, causing enormous economic losses for the poultry industry. Conventionally, immunological techniques are used to demonstrate aMPV infection in poultry, however, the identification of aMPV through molecular techniques helped in establishing the traceability of the virus. This review compiles data on the main aMPV subtypes present in different countries; aMPV and bacteria co-infection; vaccination against aMPV and viral selective pressure, highlighting the strategies used to prevent and control respiratory disease; and addresses tools for viral diagnosis and virus genome studies aiming at improving and streamlining pathogen detection and corroborating the development of new vaccines that can effectively protect herds, preventing viral escapes.

10.
Biomed Pharmacother ; 167: 115476, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37713986

RESUMEN

The Amazonian species investigated in this research are commonly utilized for their anti-inflammatory properties and their potential against various diseases. However, there is a lack of scientifically supported information validating their biological activities. In this study, a total of seventeen ethanolic or aqueous extracts derived from eight Amazonian medicinal plants were evaluated for their activity against Herpes Simplex type 1 (HSV-1) and Chikungunya viruses (CHIKV). Cytotoxicity was assessed using the sulforhodamine B method, and the antiviral potential was determined through a plaque number reduction assay. Virucidal tests were conducted according to EN 14476 standards for the most potent extracts. Additionally, the chemical composition of the most active extracts was investigated. Notably, the LMLE10, LMBA11, MEBE13, and VABE17 extracts exhibited significant activity against CHIKV and the non-acyclovir-resistant strain of HSV-1 (KOS) (SI > 9). The MEBE13 extract demonstrated unique inhibition against the acyclovir-resistant strain of HSV-1 (29-R). Virucidal assays indicated a higher level of virucidal activity compared to their antiviral activity. Moreover, the virucidal capacity of the most active extracts was sustained when tested in the presence of protein solutions against HSV-1 (KOS). In the application of EN 14476 against HSV-1 (KOS), the LMBA11 extract achieved a 99.9% inhibition rate, while the VABE17 extract reached a 90% inhibition rate. This study contributes to the understanding of medicinal species native to the Brazilian Amazon, revealing their potential in combating viral infections that have plagued humanity for centuries (HSV-1) or currently lack specific therapeutic interventions (CHIKV).

11.
Plants (Basel) ; 12(14)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37514302

RESUMEN

The literature is full of studies reporting environmental and health issues related to using traditional pesticides in food production and storage. Fortunately, alternatives have arisen in the last few decades, showing that organic agriculture is possible and economically feasible. And in this scenario, fungi may be helpful. In the natural environment, when associated with plants, these microorganisms offer plant-growth-promoting molecules, facilitate plant nutrient uptake, and antagonize phytopathogens. It is true that fungi can also be phytopathogenic, but even they can benefit agriculture in some way-since pathogenicity is species-specific, these fungi are shown to be useful against weeds (as bioherbicides). Finally, plant-associated yeasts and molds are natural biofactories, and the metabolites they produce while dwelling in leaves, flowers, roots, or the rhizosphere have the potential to be employed in different industrial activities. By addressing all these subjects, this manuscript comprehensively reviews the biotechnological uses of plant-associated fungi and, in addition, aims to sensitize academics, researchers, and investors to new alternatives for healthier and more environmentally friendly production processes.

12.
Viruses ; 15(7)2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37515172

RESUMEN

Colibacillosis is a disease caused by Escherichia coli and remains a major concern in poultry production, as it leads to significant economic losses due to carcass condemnation and clinical symptoms. The development of antimicrobial resistance is a growing problem of worldwide concern. Lysogenic bacteriophages are effective vectors for acquiring and disseminating antibiotic resistance genes (ARGs). The aim of this study was to investigate the complete genome of Escherichia coli isolates from the femurs of Brazilian broiler chickens in order to investigate the presence of antimicrobial resistance genes associated with bacteriophages. Samples were collected between August and November 2021 from broiler batches from six Brazilian states. Through whole genome sequencing (WGS), data obtained were analyzed for the presence of antimicrobial resistance genes. Antimicrobial resistance genes against the aminoglycosides class were detected in 79.36% of the isolates; 74.6% had predicted sulfonamides resistance genes, 63.49% had predicted resistance genes against ß-lactams, and 49.2% of the isolates had at least one of the tetracycline resistance genes. Among the detected genes, 27 have been described in previous studies and associated with bacteriophages. The findings of this study highlight the role of bacteriophages in the dissemination of ARGs in the poultry industry.


Asunto(s)
Bacteriófagos , Enfermedades de las Aves de Corral , Animales , Escherichia coli/genética , Antibacterianos/farmacología , Aves de Corral , Bacteriófagos/genética , Brasil , Pollos , Farmacorresistencia Bacteriana
14.
Microorganisms ; 11(6)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37375101

RESUMEN

The discovery of biomolecules has been the subject of extensive research for several years due to their potential to combat harmful pathogens that can lead to environmental contamination and infections in both humans and animals. This study aimed to identify the chemical profile of endophytic fungi, namely Neofusicoccum parvum and Buergenerula spartinae, which were isolated from Avecinnia schaueriana and Laguncularia racemosa. We identified several HPLC-MS compounds, including Ethylidene-3,39-biplumbagin, Pestauvicolactone A, Phenylalanine, 2-Isopropylmalic acid, Fusaproliferin, Sespendole, Ansellone, Calanone derivative, Terpestacin, and others. Solid-state fermentation was conducted for 14-21 days, and methanol and dichloromethane extraction were performed to obtain a crude extract. The results of our cytotoxicity assay revealed a CC50 value > 500 µg/mL, while the virucide, Trypanosoma, leishmania, and yeast assay demonstrated no inhibition. Nevertheless, the bacteriostatic assay showed a 98% reduction in Listeria monocytogenes and Escherichia coli. Our findings suggest that these endophytic fungi species with distinct chemical profiles represent a promising niche for further exploring new biomolecules.

15.
Viruses ; 15(4)2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37112964

RESUMEN

SARS-CoV-2 genome surveillance is important for monitoring risk groups and health workers as well as data on new cases and mortality rate due to COVID-19. We characterized the circulation of SARS-CoV-2 variants from May 2021 to April 2022 in the state of Santa Catarina, southern Brazil, and evaluated the similarity between variants present in the population and healthcare workers (HCW). A total of 5291 sequenced genomes demonstrated the circulation of 55 strains and four variants of concern (Alpha, Delta, Gamma and Omicron-sublineages BA.1 and BA.2). The number of cases was relatively low in May 2021, but the number of deaths was higher with the Gamma variant. There was a significant increase in both numbers between December 2021 and February 2022, peaking in mid-January 2022, when the Omicron variant dominated. After May 2021, two distinct variant groups (Delta and Omicron) were observed, equally distributed among the five Santa Catarina mesoregions. Moreover, from November 2021 to February 2022, similar variant profiles between HCW and the general population were observed, and a quicker shift from Delta to Omicron in HCW than in the general population. This demonstrates the importance of HCW as a sentinel group for monitoring disease trends in the general population.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Genómica , Personal de Salud
16.
Bioprocess Biosyst Eng ; 46(5): 665-679, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36795191

RESUMEN

This study evaluated the bioherbicidal potential of wild fungi grown on microalgal biomass from the digestate treatment of biogas production. Four fungal isolates were used and the extracts were evaluated for the activity of different enzymes and characterized by gas chromatography coupled with mass spectrometry. The bioherbicidal activity was assessed by application on Cucumis sativus, and the leaf damage was visually estimated. The microorganisms showed potential as agents producing an enzyme pool. The obtained fungal extracts presented different organic compounds, most acids, and when applied to Cucumis sativus, showed high levels of leaf damage (80-100 ± 3.00%, deviation relative to the observed average damage). Therefore, the microbial strains are potential biological control agents of weeds, which, together with the microalgae biomass, offer the appropriate conditions to obtain an enzyme pool of biotechnological relevance and with favorable characteristics to be explored as bioherbicides, addressing aspects within the environmental sustainability.


Asunto(s)
Microalgas , Biomasa , Cromatografía de Gases y Espectrometría de Masas , Biocombustibles , Hongos , Extractos Vegetales
17.
Viruses ; 15(2)2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36851563

RESUMEN

Bacteriophages are ubiquitous organisms that can be specific to one or multiple strains of hosts, in addition to being the most abundant entities on the planet. It is estimated that they exceed ten times the total number of bacteria. They are classified as temperate, which means that phages can integrate their genome into the host genome, originating a prophage that replicates with the host cell and may confer immunity against infection by the same type of phage; and lytics, those with greater biotechnological interest and are viruses that lyse the host cell at the end of its reproductive cycle. When lysogenic, they are capable of disseminating bacterial antibiotic resistance genes through horizontal gene transfer. When professionally lytic-that is, obligately lytic and not recently descended from a temperate ancestor-they become allies in bacterial control in ecological imbalance scenarios; these viruses have a biofilm-reducing capacity. Phage therapy has also been advocated by the scientific community, given the uniqueness of issues related to the control of microorganisms and biofilm production when compared to other commonly used techniques. The advantages of using bacteriophages appear as a viable and promising alternative. This review will provide updates on the landscape of phage applications for the biocontrol of pathogens in industrial settings and healthcare.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Profagos , Lisogenia , Biopelículas , Biotecnología
18.
J Water Health ; 21(1): 35-46, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36705496

RESUMEN

This study evaluated the results recorded at the Central Public Health Laboratory of Santa Catarina state (Brazil) concerning the investigation of Rotavirus (RVA) and Norovirus (NoVs) - genogroups GI and GII. Samples were taken from seawater, river water, estuary water, lagoon water, and treated water samples, from 2018 to 2021. The aim was to correlate them with each other and evaluate their association with the type of water, presence of shellfish farming, population density, and sewage treatment. The most prevalent enteric virus was RVA, followed by NoV GI and NoV GII. There was a strong correlation between the presence/absence of RVA and the presence/absence of at least one NoV genogroup, mainly in samples collected in rivers. No correlation was observed between the presence of any virus and the presence of shellfish farming. When evaluating the binomial sewage treatment vs. population density, the correlation coefficients between population density and the presence of the virus in a sample were higher than the coefficients between the percentage of treated sewage and the presence of the virus. Sources of human-origin pollution impair the quality of treated and surface waters, and therefore the results of this work can help develop viral-monitoring programs in these places.


Asunto(s)
Norovirus , Rotavirus , Humanos , Agua , Brasil , Aguas del Alcantarillado , Genotipo
19.
Food Environ Virol ; 15(1): 1-7, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36287375

RESUMEN

Oysters are filter-feeders and retain sewage-derived pathogens in their organs or tissues. Since most enteric viruses involved in outbreaks cannot grow in cell culture, studies using viral surrogate models are essential. Some species are proposed as surrogates for enteric viruses in environmental samples, including in bivalve mollusk samples, such as murine norovirus type 1 (MNV-1) and somatic (as φX) or F-specific coliphages (as MS2) bacteriophages. This study evaluated the tissue distribution of viral surrogates for enteric virus contamination after their bioaccumulation by Crassostrea gigas. Oyster tissues were analyzed for the distribution of viral surrogates (MNV-1, φX-174, and MS2) in digestive tissue (DT), gills (GL), and mantle (MT) after 4, 6, and 24 h of experimental bioaccumulation. MNV-1 had higher counts at 6 h in DT (1.2 × 103 PFU/g), followed by GL and MT (9.5 × 102 and 3.8 × 102 PFU/g, respectively). The bacteriophage φX-174 had a higher concentration in the MT at 4 and 6 h (3.0 × 102 PFU/g, in both) and MS2 in the GL after 24 h (2.2 × 102 PFU/g). The bioaccumulation pattern of MNV-1 by oysters was similar to the other enteric viruses (more in DT), while that of phages followed distinct patterns from these. Since the MNV-1 is bioaccumulated by C. gigas and is adapted to grow in cell culture, it is an important tool for bioaccumulation and viral inactivation tests in oysters. Although bacteriophage bioaccumulation was not similar to enteric viruses, they can be indicated for viral bioaccumulation analysis, analyzing MT and GL, since they do not bioaccumulate in DT.


Asunto(s)
Bacteriófagos , Crassostrea , Enterovirus , Norovirus , Virus , Animales , Ratones , Enterovirus/fisiología , Norovirus/fisiología
20.
Microorganisms ; 12(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38257889

RESUMEN

Brazil is the second largest producer of broiler chicken in the world, and the surveillance of avian pathogens is of great importance for the global economy and nutrition. Avian metapneumovirus (aMPV) infection results in high rates of animal carcass losses due to aerosacculitis and these impacts can be worsened through co-infection with pathogenic bacteria, particularly Escherichia coli (APEC). The present study evaluated the seroprevalence of the main aMPV subtypes in unvaccinated broiler chickens from poultry farms in Brazil, as well as the clinical effects of co-infection with APEC. Blood samples, respiratory swabs, femurs, liver, and spleen of post-mortem broiler chickens were collected from 100 poultry production batches, totaling 1000 samples. The selection of the production batch was based on the history of systemic and respiratory clinical signs. The results indicated that 20% of the lots showed serological evidence of the presence of aMPV, with two lots being positive for aMPV-B. A total of 45% of batches demonstrated co-infection between aMPV and APEC. The results point to the need for viral surveillance, targeted vaccination, and vaccination programs, which could reduce clinical problems and consequently reduce the use of antibiotics to treat bacterial co-infections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...